

Basic Symbolic Reasoning in a Nutshell

Symbolism	Notes	Natural Language Examples
Simple Propositions		
a^1	A set as a singular entity but comprising multiple elements. Same concept used in conventional set theory.	a^1 is the noun phrase “The apes.”
a	A set as a plural entity. This is a modification of conventional set theory.	a is the noun “Apes”.
$\forall a^1$	All relationships whose subject is a^1 . This is a simplified way of expressing the more complete $\forall S * a^1$ (see below).	
$\forall b^1$	All relationships whose object is b^1 .	b^1 is the noun phrase “The bananas”
. (dot)	Logical “and”. Same as \wedge in conventional logic. Also, same as \cap in conventional set theory.	
$\forall a^1. \forall b^1$	The relationship between a subject a^1 and an object b^1 . This is the same as an ordered pair in conventional set theory.	
$\forall a. \forall b$	The plural collection of relationships between any a and any b .	
$\forall a^1. c. \forall b^1$	The relationship between a subject a^1 and an object b^1 modified by conjunction with the collection, c , which is a collection of relationships of a particular type. There may be many such relationships at different times.	c is the verb “consume” $\forall a^1. c. \forall b^1$ is a relationship in which “the apes consume the bananas”.
$\forall a. c. \forall b$	The plural collection of relationships between any a and any b modified by conjunction with the collection, c .	$\forall a^1. c. \forall b^1$ is the plural collection of relationships in which “any ape consumes any banana”.
\emptyset	The null set.	“Nothing” or “In no circumstances”
$\forall a^1. c. \forall b^1 \neq \emptyset$	The above collection of relationships converted into a proposition by equating it to the null set, i.e., relationships of type c exist between a^1 and b^1 .	$\forall a^1. c. \forall b^1 \neq \emptyset$ is the proposition “The apes consume the bananas”.
\subseteq	The binary operator “is a subset of or equal to”. This is the same as \subseteq in conventional set theory. It is also the same as in \rightarrow conventional logic.	\subseteq means “is” or “are” between two nouns, or “if... then...” between two propositions.
$c * b^1$	The collection of relationships c operating on the object b^1 to define a collection of subjects.	“Things that consume the bananas.”
$a^1 \subseteq c * b^1$	The proposition $\forall a^1. c. \forall b^1 \neq \emptyset$ in relationship form transformed into standard form.	$a^1 \subseteq c * b^1$ is also the proposition “The apes consume the bananas” or more fully “The apes are something that consumes the bananas”.
$a \subseteq c * b$		$a \subseteq c * b$ is the proposition “(All) apes consume (some) bananas”. N.B. words in brackets are normally omitted in plain English.
$\not\subseteq$	The binary operator “is not a subset of and not equal to”. This is same as $\not\subseteq$ in conventional set theory.	
$a \not\subseteq c * b$		$a \not\subseteq c * b$ is the proposition “Not all apes consume (some) bananas”.
$c * b$	N.B. * is underscored. The complement of (or everything but) the collection of relationships c operating on the objects b to define a collection of subjects.	“Things that consume (some) bananas”

$a \not\subseteq c*b$		$a \not\subseteq c*b$ is the proposition “Some apes consume (some) bananas”.
$a \subseteq c*b$	N.B. * is underscored.	$a \not\subseteq c*b$ is the proposition “No apes consume (some or any) bananas”.

Truth and Probability

E	The universal set.	“Everything” or “Every circumstance”
$(a \subseteq c*b) = E$	A probabilistic proposition. N.B. $a \subseteq c*b$ is the same as $(a \subseteq c*b) = E$ by default.	“It is true (or certain) that all apes consume bananas.”
$(a \subseteq c*b) \neq E$	A probabilistic proposition.	“It is uncertain that all apes consume bananas.”
$(a \subseteq c*b) \neq \emptyset$	A probabilistic proposition.	“It is possible that all apes consume bananas.”
$(a \subseteq c*b) = \emptyset$	A probabilistic proposition.	“It is false (or impossible) that all apes consume bananas.”

Adjectives and Adverbs

g^1	A characteristic as opposed to a physical entity.	g^1 is the characteristic “grey”.
$\{\subseteq\}^*{}^v\mathcal{A}*g^1$ or g	The collection of physical things with that characteristic. Rather curiously, a characteristic and the conventional set of physical things with that characteristic are reciprocals in space-time. ${}^v\mathcal{A}*$ maps the former onto the latter. $\{\subseteq\}^*$ specifies the elements of that conventional set of physical things and in Symbolic Reasoning they comprise a plural collection. The whole expression can also be simplified to g .	$\{\subseteq\}^*{}^v\mathcal{A}*g^1$ or g is the collection of “grey things”.
$a.\{\subseteq\}^*{}^v\mathcal{A}*g^1 \subseteq c*b$ or $a.g \subseteq c*b$	A subject modified by an adjective.	“All grey apes consume bananas”
$a \subseteq (c.\{\subseteq\}^*{}^v\mathcal{A}*\bar{h}^1)*b$ or $a \subseteq (c.h)*b$	A verb modified by an adverb.	“All apes hungrily consume bananas”.

Compound Propositions

$(a \subseteq c*b).(d \subseteq e*f)$	Conjoined propositions.	“(All) apes consume (some) bananas and (all) dragons exhale (some) fire”.
$+$	Logical “or”. Same as \vee in conventional logic and \cup in conventional set theory. N.B. Natural English is inconsistent and sometimes is referred to as “and”. For example, apples and bananas are fruits or $a + b \subseteq f$.	
$(a \subseteq c*b) + (d \subseteq e*f)$	Disjoined propositions.	“Apes consume bananas or dragons exhale fire”.
$(a \subseteq c*b) \not\subseteq (d \subseteq e*f)$	A second order proposition.	“If apes consume bananas, then this does not imply that dragons exhale fire”.
$((a \subseteq c*b) = E) \subseteq ((d \subseteq e*f) \neq \emptyset)$	A second order probabilistic proposition.	“If it is certain that apes eat bananas, then it is possible that dragons exhale fire”
$(a \subseteq c*b) + (d \subseteq e*f) \subseteq (i^1 \subseteq j*k^1)$		“If apes consume bananas or dragons exhale fire, then I join the conscripts”.
$f.{}^v\mathcal{Q}e \subseteq \{\subseteq\}^*{}^v\mathcal{A}*d^1$ or $f.{}^v\mathcal{Q}e \subseteq d$		“Finding examples is difficult”.

Tense

$\{\langle\},*\mathbf{e}$	Circumstances before any event \mathbf{e} .	
$\{\rangle\},*\mathbf{e}$	Circumstances after any event \mathbf{e} .	

$\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1 \neq \emptyset$	Tenseless Proposition.	Andrew climbs Mont Blanc.
$\{\Box\}_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Continuous Tense Proposition.	Andrew is climbing Mont Blanc.
$\{>\}_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Imperfect Tense Proposition.	Andrew climbed Mont Blanc.
$\{>\}_T\{\Box\}_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Imperfect Continuous Tense Proposition.	Andrew was climbing Mont Blanc.
$\{>\}_T C_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Perfect Tense Proposition.	Andrew has climbed Mont Blanc.
$\{>\}_T C_T\{\Box\}_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Perfect Continuous Tense Proposition	Andrew has been climbing Mont Blanc.
$\{<\}_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Future Tense Proposition.	Andrew will climb Mont Blanc.
$\{<\}_T\{\Box\}_T(\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1) \neq \emptyset$	Future Continuous Tense Proposition.	Andrew will be climbing Mont Blanc.

Causality

	A collection of events is the same as a collection of relationships and simplified symbolism can be used. Thus, for example the collection $\forall \mathbf{Sa}^1.c.\forall \mathbf{Qb}^1$ can be simplified to a . This is because both are entities which occupy a region of space-time.	
$(@a)b$	The regions of space-time occupied by both an event a and an event b .	
E^1	The universe, i.e., all of space-time, as a singular entity.	
$(@a)E^1$	The regions of space-time occupied by an event a .	
$B*c$	The collection of beginnings in time of cs .	
$\{\Box\}*c$	The collection of regions of space-time that include the region of space-time occupied by an event c , and which may be more extensive than the latter.	
$(@a)E^1 \subseteq \{\Box\}*B*c$	A causal proposition.	An event a is sufficient to cause an event c (to begin).
$(@a)(@b)E^1 \subseteq \{\Box\}*B*c$	A causal proposition.	An event a and an event b are together sufficient to cause an event c (to begin).
$\{\subseteq\}*a$	The collection of regions of space time that are contained by a region of space-time occupied by an event a , and which may be less extensive than the latter.	
$B*c \subseteq \{\subseteq\}(@a)E^1$	A causal proposition.	An event a is necessary to cause an event c (to begin).